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Abstract

A method of approximately solving transient, particularly convective, equa-
tions on adaptive grids is presented, which has the useful properties (i) that both
the grid and the solution remain monotonic, and (ii) that the solution is always
the best fit with adjustable nodes to a recovered smoother version of itself. In this
report the underlying representation is piecewise constant and the recovered func-
tion piecewise linear, while the equation is the inviscid Burgers’ equation solved
by upwind finite differences, but other representations, equations and schemes

are also discussed.



ontents

Introduction

Piecewise Constants in 1-D

Monotonicity of the Algorithm

Conservation of the Algorithm and Higher Order
Relationship With Modified Equation
Alternative Representation

References

10

11



1 Introduction

The solutions of time-dependent partial differential equations may exhibit steep
fronts whose locations vary with time and are difficult to predict in advance.
Resolution of the resulting profiles can be achieved by a fine grid everywhere, but
such a grid is impractically large, especially for 3-D calculations.

An adaptive grid is therefore demanded, one which will ideally follow the
fronts around and provide the required resolution in a selective way. In order to
achieve this ability, however, two difficult questions must be addressed. The first
is the problem of representation of the solution on an irregular grid or rather,
in this context, the problem of knowing the best irregular grid to represent the
solution. The second is the control of the grid as the solution changes position and
shape, in particular the prevention of node overtaking (which is the equivalent in
nodal terms of monotonicity in the solution profile).

The first problem has been tackled by a number of authors in the context
of approximation theory, in particular de Boor [1], Chui [2], Loach ~ Wathen
[3], Farmer, Heath ~ Moody [4] and Baines [5]. The latter gives algorithms
for obtaining best Lo fits to continuous functions using piecewise constant and
piecewise linear representations with adjustable nodes which are relatively simple
and robust and are the basis of the nodal movement used here. Of course in the
present context there is no given function to be fitted, since the exact solution
of the PDE is not known, but we get round this difficulty by predicting the new
numerical solution and makinguse of a recovered function (see below).

The second problem, that of nodal movement and its control, has also been
the subject of many papers, in particular Dorfi ~ Drury [6], Petzold [7] and
Miller [8] (see also Verwer et al. [9]). The moving finite element (MFE) method
method of Miller [8] is an attempt to move the nodes by the same mechanism
which controls the solution, namely, consistency with the underlying PDE. As
shown by Baines [10], the result for first order PDE’s is a characteristicOfollowing
method (akin to a Hamiltonian approach), but in the case of higher order PDE’s
the nodal velocities generated are less well understood and their effectiveness is

more dubious, except in the steady state limit (Jimack [13]). In any case Miller [§]






solving PDE’s with convective terms it is usually necessary to employ some kind
of upwind differencing to achieve monotonicity. By going for monotonicity (both
in the solution and the grid) the numerical viscosity generated provides the usual
non-overturned shock-like approximation to the solution of a convective equation
and its corresponding jump condition, but will be less than for a fixed grid.

In the next section we concentrate on a particular discrete solution represen-
tation and work through the method proposed above for a particular equation,

later indicating the possible generalisations and their properties.

2 Piecewise onstants in 1-D

Suppose that the underlying discrete representation of the solution of a PDE is

piecewise constant, as shown in Fig. 1.

T |

Figure 1:

Individual point values are thought of as existing at the midpoints of each element
as in the rightmost cell of Fig. 1. We consider here the Cauchy problem for the

inviscid Burgers’ equation problem
ur+uu, =0 (1> 0) (2.1)

u=up(x) (t=0) (2.2)

A non-adaptive scheme for this problem is the upwind finite difference method

At

Uyml =Uj = |U]”|A X
S

(ur=ur,) (2.3)

J

where p = sgn(UT) and A, X7 = 2(X7, — X ). (The right hand side of (2.3)

represents a linear interpolation of the values of U after being traced back along



the characteristics.) While consistent with the differential equation (2.1), the
scheme (2.3) is highly diffusive and, particularly in the case of a steepening wave,
gives very poor representation of the exact solution. The philosophy of adaptive
grids is that sharper shocks can be achieved by clustering of the grid points in a
controlled way, namely, in the vicinity of the shock, and for this we use the grid
movement strategy described earlier.

The first task, however, is to represent the function wug(z) of (2.2) as well
as possible using piecewise constant functions on a grid with free nodes. This
problem is addressed by Baines [5], where a simple algorithm is given to generate
such a representation. In summary, this is as follows. For a given continuous
function f(x), an initial arbitrary grid is set up in each element of which a constant

approximation is found by a local Ly projection (Fig. 2).

Figure 2:

Then, taking two adjacent elements, the averaged constant value is calculated
(shown dotted in Fig. 2) and its intersection with the f(x) function found. All

grid points are treated in this way in a sweep, before another sweep is done. At



convergence the best representation is obtained. A key property of the construc-
tion is that the nodes remain ordered, i.e. there is no node tangling.

The procedure also achieves the same result when f(z) is replaced by the
piecewise linear interpolant function, with values f(X;) at X; as in Fig. 3. This
is important for what follows.

Having generated a best initial grid and profile, the next task is to try and
maintain this property as the solution evolves. As is well known, an application
of the algorithm (2.3) on a fixed grid results in a profile of the correct general
shape, but diffused. We wish to use this (piecewise constant) profile to determine
a suitable grid movement. The best fit algorithm of Baines [5] operates on a
continuous function (or a piecewise linear continuous function), which we do not
have. But we can construct a piecewise linear recovered function from the new
piecewise constant function, which is shown in Fig. 4 as the piecewise linear

function linking the mid-points of the piecewise constant cell values.

Figure 4:

As explained above, the algorithm for finding the best piecewise constant fit
to this piecewise linear function is in the form of an iteration, the first step of
which gives a new grid position X;, which may be regarded as being carried out
by a certain grid movement X] The formula for the new grid position X; is

easily obtained, being the intersection between the piecewise linear function and
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where
n+1 n
P (X X7

2.12
y Al (2.12)

The result is a piecewise constant profile at time level n + 1, obtained by a
finite difference scheme consistent with the PDE, which is a best L, fit to the
piecewise linear recovered function (standing in lieu of the exact solution) at time

level n + 1.

The algorithm of section 2 is
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These inequalities can also be proved analytically from (3.1). No tangling

is therefore possible and monotonicity of the mesh is achieved. Moreover the



upwinded nature of the scheme (3.2) means that, provided that a CFL limit is

respected, monotonicity of ; is also preserved. The CFL restriction is that
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of piecewise linears can be achieved using limited Hermite cubics as in Priestly
[21] and all the ingredients of the method are then in place. The piecewise linear
best fit algorithm of Baines [5] again involves no tangling of the grid, but this
time the movement of the grid is towards greater curvature in the profile rather
than greater steepness (Baines [3]).

While the method presented here is directed mainly at convective equations
where node clustering is required near fronts, there is no reason why other equa-

tions cannot be treated by the same method.
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