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Abstract

Semi-Lagrangian methods are now, perhaps, the most widely re-
searched algorithms in connection with atmospheric flow simulation codes. In
order to investigate their applicability to hydraulic problems, cubic Hermite poly-
nomials are used as the interpolant technique. The main advantage of such an
approach is the use of information from only two points. The derivatives are
calculated and limited so as to produce a shape-preserving solution. The lack of
conservation of semi-Lagrangian methods is however widely regarded as a serious
disadvantage for hydraulic studies, where non-linear problems in which shocks
may develop are often encountered. In this work we describe how to make the
scheme conservative using an FCT approach. The method proposed does not
guarantee an unconditional shock-capturing ability but is able to correctly re-
produce the discontinuous flows common in open channel simulation without
any shock-fitting algorithm. It is a cheap way to improve existing 1-D semi-
Lagrangian codes and allows stable calculations beyond the usual CFL limits. A
basic semi-Lagrangian method is presented that provides excellent results for a
linear problem; the new techniques allow us to tackle non-linear cases whilst not
unduly degrading the accuracy for the simpler problems. Two one dimensional
hydraulic problems are used as test cases, water hammer and dam break. In the
latter case, because of the non-linearity, special care is needed with the low order
solution and we show the advantages of using Leveque’s large time version of

Roe’s scheme for this purpose.






rithm connecting the regions of smooth flow(").

In this paper we shall concern ourselves with the performance of
shape-preserving Hermite cubic polynomials as the interpolant technique when
implementing a semi-Lagrangian scheme to solve the 1-D shallow water equations.
We will also consider the applicability and limitations of new ways of coping with

the lack of the important property of conservation.

Below we shall briefly describe the semi-Lagrangian algorithm and
the implementation of shape preserving solutions using Hermite polynomials. In
Section 2 a technique to recover conservation will be introduced for the scalar case
as well as for systems of equations. It will be pointed out that some difficulties
can be met when applying it to a system of equations. In section 3 an extension

will be proposed to overcome this difficulty.

To demonstrate its effectiveness, and to facilitate this study, two
tests problems from the hydraulic literature have been selected and several nu-

merical results are shown.

1.1 Test Problems

1. Dambreak flow

Even though the strategy to recover conservation in semi-Lagrangian schemes is
not intended to produce a method able to cope with strong discontinuities, as in
other shock-capturing methods, and our primary interests are in river and pipe
flows, where discontinuities are generally weaker, the idealized dambreak problem
was chosen because it is a classical example of non-linear flow with shocks to
test conservation in numerical schemes and, at the same time, has an analytical
solution.

This problem is generated by the one-dimensional shallow water



equations given by
ot =0 (1.1)
Wt (L4 gh) =0 '
where A is the wetted cross sectional area, () is the discharge and [y represents a
hydrostatic pressure force term. For the ideal case of a flat, frictionless channel
of unit width and rectangular cross section, we have A = h, h being the water

depth, and I; = %ghz, g being the acceleration due to gravity.

The initial conditions are

h(xz,0) =

N o

hrp ifz>

Q(x,0) = 0.

Calculation times were used so as to avoid interaction with the extremities of the

channel. The boundary conditions are then trivial.

2. The water hammer problem

The linearized water hammer problem, due to its popularity as an example in
the related literature, was selected as a means to compare the performance of the
monotone Hermite cubic interpolation against other proposed semi-Lagrangian
schemes. It was also used to determine the extent of the effect caused by the
recovery of conservation. Being a linear and simplified problem, it was suitable
in order to focus attention on the adaptation of the algorithm to systems of
equations. Following the dimensionless formulation of Sibetheros et al.(?!), for

instance, this second test problem deals with the solution of the linear system of

equations
OH aVv
W + Claix =0
aVv OH
E + Claix =0

with the initial conditions

H(z,0)=0, V(2,0)=1
and the boundary conditions

H(0,t)=0, V(L,t)=0
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where

The dimensionless variables are

Where is the velocity, 1is the specific head and 0 subscripts refer to the undis-

turbed values.

In this section we review the semi-Lagrangian solution to the scalar problem:
: T+ ( ) =0

which describes the advection of (). The invariance of a scalar quantity

along a trajectory,

()= o)+ ( ) (21)

to
is common to a wide variety of fluid dynamics topics. The aim is to obtain a

good approximation of the function () at all the ; points of a fixed discrete

grid, assuming that and are known everywhere in the grid at an earlier time .

In general, two distinct steps are involved. The first step deter-
mines the departure points ¢ of the trajectories arriving at ; from the past

time through approximate solutions of (2.1). The second step is concerned with
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and then limiting their values® in the manner
d; = sign(d;) min(|d;] , [3A;_1], [A;]) (2.3)

As explained by Rash and Williamson"®, (2.2) and (2.3) are more than a mono-
tonicity constraint; they are also a form of convexity or positivity constraint in
the sense that they control overshoots on the interval next to local extrema. Be-
ing actually nonmonotonic in such regions they prevent oscillations at the edge
of flat regions. This can be useful in avoiding clipping of solutions and no new

extrema are introduced.

Although there is an inevitable sacrifice of accuracy in the numer-
ical result when monotonicity is sought, the above technique gives satisfactory

results for many kinds of problems at a minimum computational cost.

As an illustration, Figs. 1 and 2 display some results from the so-
lution of test case 2 with the described monotone Hermite cubic semi-Lagrangian
method. They have been computed on two different grids of N =13 and N = 37
points with C'F'LL, = 1.5. In all cases the continuous line is used in as a reference

and it represents the solution using C'F'L = 1.

The upper parts in these pictures are the temporal variation of
the head H(L,t) at the downstream end. The corresponding (spatial) longitudi-
nal head profiles for four dimensionless times (0.125, 1.125, 2.125 and 5.125) are
shown in the lower parts of the same pictures. They have been arranged so that
the thinner the line is, the greater the time it stands for. It can be seen that no
oscillations are present in the solutions and that the accuracy increases with the
number of points. These results compare very favourably with those published

elsewhere(?1),

Unfortunately, this method is not able to give satisfactory results
when dealing with open channel flow problems in which discontinuities, such as

bores or hydraulic jumps, may occur. This is a consequence of the nonlinearity of






lution U and a low order, shape-preserving, solution /%,

K3

UM = o,UF + (1 — a;)UF (3.1)

with 2 =1, N and

The coefficients {a;} are to be chosen as large as possible whilst maintaining
monotonicity. Obviously, a trivial solution exists when «; = 0,2 = 1, N, corre-

sponding to the already monotone U¥.

Denoting by U" the solution obtained at the previous time level and
by {U",i} the set of solution values used to interpolate at the foot of the char-
acteristic passing through z;, the following inequalities provide adequate upper

and lower bounds to the coefficients {a;}:
min({U", 1}, UF) < oyUF + (1 — a)UF < max({U",i},U"). (3.3)

Equation (3.3) differs from the one given by Bermejo and Staniforth(® only in
that the value of the low order solution has been included in the bounds. When
UY is calculated using linear interpolation of the {U", i} values for pure linear
advection problems, the conditions reduce to those of Bermejo and Staniforth.
For more general problems, including source terms or when solving non-linear
systems, the presence of the low-order solution in (3.3) is necessary to allow new
controlled extrema to be generated by the low order scheme. It is worth not-
ing here that linear interpolation must be used with care when solving non-linear

problems and it will be shown to be inadequate for non-linear systems with shocks.

We now proceed to discuss the recovery of conservation and, for

the sake of clarity, we shall do it in the scalar case.

3.1 Scalar equations

The set of optimal {a;} satisfying (3.3) and providing a monotone and accurate
solution will be considered as upper bounds, {a**} for another choice of {a;}

made to produce a monotone, accurate and conservative solution.
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The negative terms of the sum in (3.7), as well as those equal to
zero, are supplied with the highest possible coefficient in order to reduce as much

as possible the size of the total, i.e.,

In order to calculate the coefficients for the rest of the terms, an estimate can be
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must hold.

If it happens that

maz (1) (1)

s s

then ¢ can be completely removed from (4.4) so that

and

Otherwise, ¢, can be supplied with the largest possible value,
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N =12 N =24 N =148 N =96
HP 0.629 0.384 0.332 0.269
MHP 0.795 0.489 0.387 0.304
IRC 0.684 0.535 0.415 0.322
IRCLP 0.718322




maxr




Monotone Hermite cubic polynomials with derivatives calculated explicitly from
the neighbouring points seems a very efficient method of interpolation in the
context of semi-Lagrangian schemes.

A new recovery of conservation procedure has been proposed to
render the scheme much more suited to hydraulic problems with shocks. It is
based on an FCT approach and relays on the adequate choice of a set of coefficients
combining a high and a low order method. Two hydraulic problems have been
used as test cases, water hammer and dam break. In the latter case special care
is needed with the low order solution and we have shown the advantages of using
Leveque’s large time version of Roe’s scheme for this purpose.

In this paper we have been concerned with 1-D shallow water equa-
tions and so made use of the Riemann invariants. Most of the concepts presented
here extend nevertheless to higher dimensions and to large systems. The semi-
Lagrangian approach and the basic independent recovery algorithms work equally

613) They can clearly be applied to arbitrarily large

well in higher dimensions(
systems. The in-phase conservation, in principle, could also be extended but
there is a real danger of running out of degrees of freedom before conservation in

all required variables is achieved.
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Figure 3: Monotone cubic interpolation. N=101. Dambreak problem for a height
ratio 5:1. Upper: CFL=0.75. Lower: CFL=1.75
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Figure 7: Recovery of Conservation: Cubic interpolation and Roe’s scheme.
N=101. Dambreak problem for a height ratio 5:1. Upper: CFL=0.75. Lower:
CFL=1.75
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Figure 8: Recovery of Conservation:
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Cubic interpolation and Roe’s scheme.
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