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1. Introduction

Environmental systems can be realistically described by mathematical and
numerical models of the system dynamics. These models can be used to
predict the future behaviour of the system, provided that the initial states
of the system are known. Complete data deflning all of the states of a
system at a speciflc time are, however, rarely available. Moreover, both the
models and the available initial data contain inaccuracies and random noise
that can lead to signiflcant difierences between the predicted states and the
actual states of the system. In this case, observations of the system over time
can be incorporated into the model equations to derive ‘improved’ estimates
of the states and also to provide information about the ‘uncertainty’ in the
estimates.

The problem of state-estimation is an inverse problem and can be treated
using observers and/or fllters derived by feedback design techniques from
control theory (see, for example, Barnett and Cameron, 1985). For the
very large nonlinear systems arising in the environmental sciences, how-
ever, traditional control techniques are not practicable and ‘data assimi-
lation’ schemes have been developed to generate accurate state-estimates

1Link: http://www.springer.com/earth+sciences/computer+%26+mathematical
+applications/book/978-3-540-74702-4



(see, for example, Daley, 1993; Bennett, 1992). The aim of such schemes
can be stated as follows.



lation problem for this case and examine its properties. Next we determine
a best linear estimate of the solution to the nonlinear assimilation problem.
The data assimilation scheme is then interpreted in a stochastic framework
and the ‘optimal’ state-estimate is derived using statistical arguments. We
consider the case where the model includes errors in the system equations
in a later section of this chapter.

2.1. BASIC LEAST-SQUARES FORMULATION FOR PERFECT MODELS

Data assimilation schemes are described here for a system modelled by the
discrete nonlinear equations

xk+1 = Mk;k+1 (xk) ; k = 0; : : : ; N − 1; (1)

where xk ∈ IRn denotes the vector of n model states at time tk and
Mk;k+1 : IRn → IRn is a nonlinear operator describing the evolution of
the states from time tk to time tk+1 . The operator contains known inputs
to the system including known external forcing functions that drive the
system and known parameters describing the system.

Prior estimates, or ‘background estimates,’ xb
0 , of the initial states x0

at time t0 are assumed to be known, usually provided by a previous fore-
cast.

The observations are assumed to be related to the system states by the
equations

yk = Hk(xk) + –k ; k = 0; : : : ; N; (2)

where yk ∈ IRpk is a vector of pk observations at time tk and Hk :
IRn → IRpk is a nonlinear operator that includes transformations and
grid interpolations. The observational errors –k ∈ IRpk consist of instru-
mentation errors and representativity errors (see Lahoz et al., this book).

For the ‘optimal’ analysis, we aim to flnd the best estimates xa
k for the

system states xk; k = 0; : : : ; N; to flt the observations yk; k = 0; : : : ; N;
and the background state xb

0 , subject to the model equations (1). We write
the problem as a weighted nonlinear least-squares problem constrained by
the model equations.

Problem 1 Minimize, with respect to x0, the objective function

J =
1
2

(x0 − xb
0)T B−1

0 (x0 − xb
0) +

+
1
2

NX

k=0

(Hk(xk)



The model is assumed here to be ‘perfect’ and the system equations are



the weighting matrix B0 is nonsingular, however, then, provided the opera-
tors M0;k and Hk are continuously difierentiable, the stationary points of
the least-squares problem are well-deflned. The weighted background term
acts as a ‘regularization’ term, ensuring the existence of a solution and also
damping the sensitivity of the solution to the observational errors (Johnson
et al., 2005b, 2005a).

Under these conditions, the stationary points of the objective function
(4) satisfy the gradient equation, given by

∇x0J = JT f(x0) = 0 ; (6)

where J is the Jacobian of the vector function f deflned in (5). The Jaco-



2.3. BEST LINEAR LEAST-SQUARES ESTIMATE

In general, explicit solutions to the nonlinear data assimilation problem,
Problem 1, cannot be found. A ‘best’ linear estimate of the solution to
the nonlinear problem can, however, be derived explicitly. We assume that
the departure of the estimated analysis xa

0 from the background xb
0 is a

linear combination of the innovations dk = yk −Hk(xb
k) , k = 0; 1; : : : ; N ,

and flnd the estimate for xa
0 that solves the least-squares data assimilation

problem as accurately as possible.
To determine the estimate, we linearize the assimilation problem about

the nonlinear background trajectory xb
k = M0;k (xb

0) , k = 1; : : : ; N . We
denote by the matrices Hk and M0;k the linearizations of the observation
and model operators Hk and M0;k , respectively, about the background
trajectory; that is,

Hk =
@Hk

@x
|xb

k
; M0;k =

@M0;k

@x
|xb

0
:

The linearized least-squares objective function is then given by

~J =
1
2

–xT
0 B−1

0 –x0 +
1
2

N−1X

k=0

(HkM0;k–x0−dk)T R−1
k (HkM0;k–x0−dk) ; (8)

where –x0 = (x0 − xb
0) . Using the compact form of the Jacobian (7), the

gradient equation of the linearized problem may be written

∇x0
~J = B−1

0 (x0 − xb
0) +

+
NX

k=0

(HkM0;k)T R−1
k (HkM0;k(x0 − xb

0)− (yk −Hk(xb
k))

= (B−1
0 + ĤT R̂−1Ĥ)(x0 − xb

0) + ĤT R̂−1d̂
= 0 ; (9)

where d̂ = (dT
0 ; dT

1 ; : : : ; dT
N )T is the vector of innovations.

The optimal linear state-estimate for xa
0 is then the solution to the

gradient equation (9) and is given by

xa
0 = xb

0 + K̂d̂ ; (10)

where

K̂ = (B−1
0 + ĤT R̂−1Ĥ)−1ĤT R̂−1 ≡ B0ĤT (ĤB0ĤT + R̂)−1 : (11)

The matrix K̂ is known as the gain matrix.





In addition to the basic statistical assumptions, the errors in the prior



In practice the error distributions may not be Gaussian and the assump-
tions underlying the estimates derived here may not hold. Ideally, we would
like to be able to determine the full probability distributions for the true
states of the system given the prior estimates and the observations. This is
a major topic of research and new approaches based on sampling methods
and particle fllters are currently being developed.

Techniques used in practice to solve the data assimilation problem,
Problem 1, include sequential assimilation schemes and variational assimi-
lation schemes. These methods are described in the next two sections.

3. Sequential Data Assimilation Schemes

We describe sequential assimilation schemes for discrete models of the
form (1), where the observations are related to the states by the equa-
tions (2). We make the perfect model assumption here. We assume that at
some time tk , prior background estimates xb

k for the states are known.
The difierences between the observations of the true states and the observa-
tions predicted by the background states at this time, (yk−H(xb

k)) , known
as the innovations, are then used to make a correction to the background
state vector in order to obtain improved estimates xa

k , known as the anal-
ysis states. The model is then evolved forward from the analysis states to
the next time tk+1 where observations are available. The evolved states of
the system at the time tk+1 become the background (or forecast) states
and are denoted by xb

k+1 . The background is then corrected to obtain an
analysis at this time and the process is repeated.

Mathematically this procedure may be written

xa
k = xb

k + Kk(yk −Hk(xb
k))) ; (16)

xb
k+1 = Mk;k+1(xa

k) : (17)

The matrix Kk ∈ IRn×p, known as the ‘gain matrix,’ is chosen to ensure
that the analysis states converge to the true states of the system over time.
This is possible if the system is ‘observable.’ Conditions for this property
to hold are known. (See, for example, Barnett and Cameron, 1985.)

The system (16)-(17) forms a modifled dynamical system for the analysis
states that can be written

xa
k+1 = Mk;k+1(xa

k)



its Jacobian, given by the matrix (Mk;k+1 + Kk+1Hk+1Mk;k+1) , where
Hk = @Hk

@x |xa
k

and Mk;k+1 = @Mk;k+1

@x |xa
k

. The choice of the gain matrices
Kk , k = 0; 1; : : : ; therefore determines the behaviour of the analysed states
over time and this choice characterizes the data assimilation scheme.

3.1. OPTIMAL SEQUENTIAL ASSIMILATION SCHEME

For the ‘optimal’ sequential assimilation scheme, the analysis xa
k , given

by (16), is taken to be the best linear estimate of the solution to the least
squares assimilation problem

min
x

[
1
2

(x− xb
k)T B−1

k (x− xb
k) +

1
2

(Hk(x)− yk)T R−1
k (Hk(x)− yk)] (19)

at time tk . The gain matrix Kk is then given by

Kk = BkHT
k (HkBkHT

k + Rk)−1; (20)

with Hk = @Hk
@x |xb

k
.

If we assume that the background errors are randomly distributed with
mean zero and error covariance matrix

Bk = E((x− xb
k)(x− xb

k)T ) ; (21)

then the optimal analysis is equal to the BLUE, or best linear unbiased
estimate, and minimizes the analysis error variance given, at the optimum,
by

Ak ≡ E((x− xa
k)(x− xa

k)T ) = (In −KkHk)Bk : (22)

If the random background error vector has a Gaussian distribution, then the
analysis is the maximum posterior Bayesian estimate. For linear systems,
the solution (16),(20) gives the exact optimal analysis, but for nonlinear
systems this solution gives only a flrst order approximation to the optimal
due to the linearizationdue(x)24 TD[(due(x)24 TD[(d1 100.91 Tf 5.16.14 73373(to)-371(for)-420o)-37obsererror)pro7303(-1.78eratordue)-3737(en,)-3i s13910.9near



steps of the extended Kalman fllter assimilation scheme are then given as
follows. For k = 0; 1; : : : flnd

xa
k = xb

k + Kk(yk −Hk(xb
k))) ; (23)

where Kk = BkHT
k (HkBkHT

k + Rk)−1 ; (24)
Ak = (I−KkHk)Bk ; (25)

xb
k+1 = Mk;k+1(xa

k) ; (26)

Bk+1 = Mk;k+1AkMT
k;k+1 : (27)

For systems where the model and observation operators are linear, the
analysis xa

N produced by the Kalman fllter at time tN is exactly equal
to the solution xa

N = M0;N (xa
0) to the least-squares data assimilation

problem, Problem 1, at the end of the time window. Furthermore, the
analysis states produced by the Kalman fllter converge over time to the
expected values of the true states. For nonlinear systems, however, the
EKF only gives approximations to the optimal solution and the EKF may
even become unstable as a dynamical system. The EKF is also sensitive to
computational round-ofi errors (Bierman, 1977).

For large geophysical and environmental systems the extended Kalman
fllter is, in any case, impractical to implement due to the size of the covari-
ance matrices that need to be propagated. For example, for global weather
and ocean systems, the EKF requires the computation of matrices contain-
ing of the order of 1014 elements at every time step, making it computa-
tionally much too expensive to use for real-time state estimation.

The second di–culty in implementing the optimal assimilation scheme
(16),(20) sequentially is that in order to compute the analysis xa

k at each
time step, we must flnd BkHT

k wa
k , where wa

k solves the linear equations

(HkBkHT
k + Rk)wa

k = (yk −Hk(xb
k)) : (28)

This is a very large inverse problem with O(105 − 106) variables to flnd.
Moreover, the solution may be sensitive to small errors in the data if the
matrix (HkBkHT

k + Rk) is ill-conditioned.
In practice most operational sequential assimilation schemes avoid these

two di–culties by using approximations that can be implemented e–ciently.
A summary of these methods is given in the next subsection.

3.2. PRACTICAL IMPLEMENTATION

A variety of sequential data assimilation schemes have been developed
for practical implementation. These difier mainly in the detailed steps of
the procedures. Sequential assimilation schemes used operationally include
(Nichols, 2003a):



{ Successive Correction. In these schemes, the feedback gain Kk is
not chosen optimally, but is designed to smooth observations into the states
at all spatial grid points within some radius of in°uence of each observation
(Bergthorsen and Dõõs, 1955). An iterative process is used to determine
the analysis. The Cressman scheme is an example (Cressman, 1959). The
iterations converge to a result that is consistent with observational error
but may not be consistent with the dynamical system equations. Over time
the analysis states may not converge to the expected values of the true
states. These schemes are generally not efiective in data sparse regions.

{ Optimal Interpolation or Statistical Interpolation. These schemes
approximate the optimal solution by replacing the background error covari-
ance matrix Bk by a constant matrix ~B , which has a ‘flxed’ structure for
all k . The gain matrix Kk in (16) is then taken to be

Kk = ~BHT
k (Hk

~BHT
k + Rk)−1 : (29)

(See Ghil and Malanotte-Rizzoli, 1991.) The matrix ~B is generally deflned
by an isotropic correlation function (dependent only on the distance be-
tween spatial grid points and observational points), with the correlation



{ 3DPSAS and 3D-Representer. In these schemes iterative mini-
mization methods are applied to the dual variational problem

min
w

[
1
2

(wT Hk
~BHT

k + Rk)w −wT (Hk(x)− yk)] :

The iterates converge to the solution wa
k of the system (28) with Bk re-

placed by ~B . The resulting analysis states converge to xa
k = ~BHT

k wa
k ,

which approximates the ‘optimal’ solution to the variational problem (19),
as in the 3DVAR scheme (Cohn et al., 1998; Daley and Barker, 2001). The
advantage is that this scheme operates in the ‘observation space,’ which is
of lower dimension than the state space. Additional work is needed, how-
ever, in order to reconstruct the analysis states.

In summary, most operational sequential data assimilation schemes aim
to approximate the optimal analysis by replacing the background error co-
variance matrix by an approximation that is flxed over time and by simpli-
fying the inversion problem and/or solving the inversion iteratively. Exam-
ples illustrating the application of these schemes to simplifled models can be
found in Martin et al., (1999) and on the website of the Data Assimilation
Research Centre at http://darc.nerc.ac.uk/ .

3.3. ENSEMBLE FILTERS AND SAMPLING METHODS

Newer approaches to sequential data assimilation known as ensemble fll-
ter methods, based on classical Kalman or square-root flltering, have re-
cently received much attention. These methods use reduced rank estimation
techniques to approximate the classical fllters and make the implementa-
tion feasible in real time. With these methods an ensemble consisting of a
small number of analysis vectors (much less than the number of states n )
is propagated simultaneously by the nonlinear model from one observation
time to the next in order to provide an ensemble of background states.
The background ensemble is updated with the observations to give a new
ensemble of analysis vectors and the ‘optimal’ analysis state and its er-
ror covariance matrix are determined using a fllter similar to the classical
fllters. An advantage of these methods is that the model and observation
operators are not approximated linearly. The accuracy of the estimated
states depends, however, on the spread of the ensemble, which must be
su–cient to capture the true behaviour of the system.

There are many variants of this technique under development; see, for
example, Anderson (2001); Bishop et al., (2001); Burgers et al., (1998);
Evensen (2003); Houtekamer and Mitchell (1998); Nerger



these methods retain the advantages of the classical Kalman and square-
root fllters while remaining feasible for application to large systems. Details
of these techniques are described in a later chapter (Kalnay, this book).

Sampling and particle fllter methods aim to determine the full probabil-
ity distributions for the true states of the system. These methods allow for
non-Gaussian behaviour of the errors in the prior estimates and the obser-
vations and are closely related to the ensemble methods; see for example,
Anderson and Anderson (1999); Pham, (2001); Kim et al., (2003); van
Leeuwen, (2003); Apte et al., (2007). Although these methods are not yet



tion procedure to flnd an improved estimate for the optimal initial states.
Each step of the gradient iteration process requires one forward solution of
the model equations, starting from the current best estimate of the initial
states, and one backward solution of the adjoint equations. The estimated
initial conditions are then updated using the computed gradient direction.
This process is expensive, but it is operationally feasible, even for very large
systems.

A dual approach, used in 4DPSAS and 4D-Representer methods, in
which the minimization is performed in observation space, is also possible
(Courtier, 1997; Xu et al., 2005; Rosmond and Xu, 2006). In these schemes,
as in the three dimensional 3DPSAS and 3D-Representer methods, a dual
four-dimensional variational problem is solved using a gradient iteration
method, and the analysis states are then reconstructed from the dual vari-
ables.

The primary di–culty in implementing variational assimilation schemes
is the need to develop an adjoint model for the system. The adjoint equa-
tions are related theoretically to the linearized state equations, and the
system matrix of the adjoint model is given directly by MT

k;k+1 , where
Mk;k+1 is the system matrix of the linearized model. The adjoint equa-
tions can thus be generated directly from the linearized system equations.
Automatic difierentiation techniques can be applied to the forward solution
code to generate the adjoint code (Griewank and Corliss, 1991; Giering and
Kaminski, 1998). Alternatively an approximate adjoint system can be ob-
tained by discretizing a continuous linear or adjoint model of the nonlinear
dynamics (Lawless et al., 2003). This approach has the advantage that ad-
ditional approximations can be incorporated into the linearization of the
system equations.

Other issues arising in the use of variational schemes are the need to
cycle the scheme from one analysis time to the next and the length of the
window to be used in each cycle. For each new cycle, the initial background
weighting, or covariance, matrix B0 should depend on the current best
estimate of the state, which is taken to be the optimal solution of the
variational problem at the end of the previous assimilation window. The
Hessian of the objective function at the end of the previous cycle can provide
this information, but this information is expensive to extract. In practice
a climatological or seasonal average is used for the weighting matrix to
start each cycle. New research is now becoming available on °ow dependent
covariance matrices and on longer assimilation windows, in which the initial
weighting matrix is expected to have less in°uence on the analysis (see
ECMWF, 2007).



4.2. INCREMENTAL VARIATIONAL METHODS

To make the variational methods more e–cient, an ‘incremental’ approach
is generally used in which the nonlinear assimilation problem is replaced by
a sequence of approximate linear least-squares problems (Courtier et al.,
1994).

At each step i of this method, a linear variational problem is solved to
flnd an increment –x(i)

0 to the current best estimate of the analysis x(i)
0 .

From the analysis x(i)
0 we solve the nonlinear model equations (1) in order

to determine the analysis states x(i)
k = M0;k(x(i)

0 ) and the corresponding
innovations d(i)

k = yk−Hk(x(i)
k ) at time tk . We then linearize the nonlinear

assimilation problem about the analysis state trajectory. Initially we set
x(0)

0 = xb
0 , for i = 0 . The linearized variational problem becomes

min
–x

(i)
0

1
2

(–x(i)
0 − [xb

0 − x(i)
0 ])TB−1

0 (–x(i)
0 − [xb

0 − x(i)
0 ])

+
1
2

NX

k=0

(Hk–x(i)
k − d(i)

k )TR−1
k (Hk–x(i)

k − d(i)
k ) ; (33)

subject to the tangent linear model (TLM) equations

–x(i)
k+1 = Mk;k+1–x(i)

k ; (34)

where Mk;k+1 ∈ IRn×n and Hk ∈ IRn×pk are linearizations of the operators
Mk;k+1 and Hk about the states x(i)

k . A new estimate for the analysis
x(i+1)

0 = x(i)
0 + –x(i)

0 is obtained by updating the current estimate of the
analysis with the solution to the linear variational problem (33) and the
process is then repeated.

The linearized problem (33) is solved by an ‘inner’ iteration process.
Each inner iteration requires one forward solution of the tangent linear
model equations (34), and one backward solution of the corresponding lin-
ear adjoint equations to determine the gradient of the objective function.
The full incremental variational procedure thus consists of an inner and
outer iteration process. In practice, the inner linear least-squares problem
is solved only approximately, using a relatively small number of inner it-
erations, and only a few outer loops of the process are carried out, due to
computational time constraints.

The incremental approach is also used in the implementation of the
4D-Representer method (Xu et al., 2005). The dual of the inner linear
minimization problem is solved in observation space. The increments in
physical space are then reconstructed from the dual variables at the end of
the inner iteration and the outer loop is repeated.



Recently the incremental procedure has been shown to be equivalent to
an approximate Gauss-Newton method and conditions for its convergence
have been established (Lawless et al., 2005; Gratton et al., 2007). Approxi-
mations to the tangent linear model and to the corresponding adjoint may
be used in the inner iteration without loss of convergence. Furthermore,
the inner linear minimization problem does not need to be solved to full
accuracy in each outer loop, thus avoiding unnecessary computation. Ap-
propriate stopping criteria for the inner iteration process are presented in
Lawless and Nichols (2006).

Additional techniques for increasing the e–ciency of the four-dimensional
variational methods are discussed in the next subsections.

4.3. CONTROL VARIABLE TRANSFORMS

In the incremental variational assimilation scheme, transformations of the
‘control variables’ may be applied in order to ‘decouple’ the state variables,
to simplify the computational work and to improve the conditioning of the
minimization problem. The assimilation problem is written in terms of new
variables ´0 , where

(x0 − xb
0) = U´0 : (35)

The transformed linear variational problem (33) becomes

min
´0

[
1
2
||B−1=2

0 U´0||22 +
1
2
||R̂−1=2ĤU´0 − R̂−1=2d̂||22 ] : (36)

where Ĥ , R̂ are deflned as in (7) and d̂ is the vector comprised of the inno-
vations. The conditioning of the optimization problem then depends on the
Hessian of the objective function. Transforming the control variables alters
the Hessian and changes the convergence properties of the inner iteration of
the incremental method. The transformation thus acts as a preconditioner
on the inner linearized least-squares problem. The transformation does not,
however, afiect the convergence of the outer loop of the incremental process.

If we choose U = B1=2
0 , where B1=2

0 is the symmetric square root of
B0 , the transformed problem (36) takes the form of a classical Tikhonov
regularized inverse problem. The Hessian is then given by

I + B1=2
0 ĤR̂−1ĤB1=2

0 ; (37)

which is essentially a low-rank update of the identity matrix. The matrix
R̂−1=2ĤB1=2

0 is the observability matrix of the system and is key to the
assimilation of information from the observations (Johnson et al., 2005a,
2005b). In the transformed optimization problem (36), the state variables in
the background (or regularization) term are weighted by the identity matrix



and thus are decoupled. From a statistical point of view, this means that
the transformed variables are uncorrelated, identically distributed random
variables. From a practical point of view, the computational work needed
in the inversion of the Hessian is simplifled and the inner iteration may
be implemented more e–ciently. Additional preconditioners may also be
applied to the gradient minimization algorithm in the incremental method
to give further increases in the rates of convergence.

Operationally, control variable transforms may be used implicitly to
deflne the background weighting, or covariance, matrix B0 in the least-
squares formulation of the assimilation problem. A set of control variables
is selected that are assumed from physical arguments to be uncorrelated.
An appropriate transformation U from these variables to the original vari-
ables (x0−xb

0) is then deflned and the matrix B0 is implicitly constructed
from this transformation together with information about the spatial auto-
correlations of each control variable. By this method additional constraints
can be built into the transformations to ensure balance relations hold be-
tween the variables, and spectral and other transformations can also be
applied implicitly. Flow dependence is also introduced into the weighting



et al., 2008). More e–cient approaches using subspace iteration methods
and rational interpolation techniques are currently under development. The
latter approaches are promising as they allow for the practical reduction of
unstable systems (Boess, 2008; Bunse-Gerstner et al., 2007). E–cient new
approximation methods based on proper orthogonal decomposition (POD)
have also been developed recently for constructing the optimal projection
operators (Willcox and Peraire, 2002).

Other new approaches aim to solve the full nonlinear variational prob-
lem in a low dimensional subspace spanned by basis functions generated
using POD schemes from control theory or other similar methods. (See Cao
et al., 2007, and references therein.) The accuracy and e–ciency of these
methods depends on how well the dynamics of the system can be captured
in the low dimensional space. Similar techniques, which are adjoint free,
have been developed for parameter estimation and model calibration (Ver-
meulen and Heemink, 2006). Research in this area is currently active.

In summary, four-dimensional variational data assimilation schemes are
in operational use at major numerical weather forecasting centres and new
theory and new implementation techniques for these schemes continue to
be major areas for research. Examples illustrating the use of these schemes
on simplifled models can be found in Gri–th (1997) and Lawless, Gratton
and Nichols (2005). Tutorial examples are also available on the website of
the Data Assimilation Research Centre at http://darc.nerc.ac.uk/ .

5. Data Assimilation for Dynamical Systems with Model Errors

In the previous sections of this chapter, we have made the ’perfect’ model
assumption that the initial states of the model equations uniquely deter-
mine the future states of the system. In practice, however, the nonlinear
dynamical model equations describing geophysical and environmental sys-
tems do not represent the system behaviour exactly and model errors arise
due to lack of resolution (representativity errors) and inaccuracies in phys-
ical parameters, boundary conditions and forcing terms. Errors also occur
due to discrete approximations and random disturbances. Model errors can
be taken into account by treating the model equations as weak constraints
in the assimilation problem.

A general least-squares formulation of the data assimilation problem



technique of state augmentation is developed (Nichols, 2003b) and appli-
cations are reviewed.

5.1. LEAST SQUARES FORMULATION FOR MODELS WITH ERRORS

We assume that the evolution of the dynamical system, taking into account
model errors, is described by the discrete nonlinear equations

xk+1 = Mk;k+1 (xk) + †k ; k = 0; : : : ; N − 1; (38)

where †k ∈ IRn denotes model errors at time tk . Prior estimates, or ‘back-
ground’ estimates, xb

0 , of the initial states x0 are assumed to be known
and the observations are assumed to be related to the system states by the
equations (2).

For the ‘optimal’ analysis, we aim to flnd the best estimates xa
k of the

true states of the system, xk , given observations yk ; k = 0; : : : ; N; subject
to the model equations (38) and prior estimates xb

0 . The ‘optimal’ assim-
ilation problem is written as a weighted nonlinear least-squares problem
where the square errors in the model equations, together with the square
errors between the model predictions and the observed system states and
between the background and initial states are minimized. The data assim-
ilation problem is deflned mathematically as follows.

Problem 2 Minimize, with respect to x0 and †k; k = 0; : : : ; N; the objec-
tive function

J =
1
2

(x0 − xb
0)T B−1

0 (x0 − xb
0) +

+
1
2

NX

k=0

(Hk(xk)− yk)T R−1
k (Hk(xk)− yk) +

+
1
2

NX

k=0

†T
k Q−1

k †k ; (39)

subject to xk ; k = 1; : : : ; N; satisfying the system equations (38).

The model equations (38) are treated here as weak constraints on the
objective function. The initial states of the system and the model errors
at every time step are the control parameters that must be determined.



If we assume that the errors in the prior estimates, in the observations
and in the model equations are random variables, then the ‘optimal’ solu-
tion to the weakly constrained data assimilation problem, Problem 2, can
be interpreted in a statistical sense. We assume that the probability distri-
bution of the random errors (x0 − xb

0) between the true initial states and
the prior background estimates is Gaussian with mean zero and covariance
matrix B0 ∈ IRn×n . The observational errors –k ∈ IRpk , deflned in (2), are
assumed to be unbiased, serially uncorrelated, Gaussian random vectors
with covariance matrices Rk ∈ IRpk×pk . The model errors †k , deflned in
(38), are also assumed to be randomly distributed variables that are un-
biased and serially uncorrelated, with zero means and covariance matrices
given by Qk ∈ IRn×n . The model errors, the observational errors and the
errors in the prior estimates are assumed to be uncorrelated. Under these



the minimization is performed in observation space.
For very large stochastic systems, such as weather and ocean systems,

these techniques for treating model errors are not practicable for ‘real-
time’ assimilation due to computational constraints. The four-dimensional
variational and extended Kalman fllter data assimilation schemes are both
generally too expensive for operational use due to the enormous cost of esti-
mating all of the model errors in the variational approach or, alternatively,
propagating the error covariance matrices in the Kalman fllter.

Promising practical approaches to solving the assimilation problem for
models with stochastic forcing errors include the sequential ensemble fllter
methods and the dual variational methods. The ensemble methods take the
model errors into account in the low order equations for propagating the
ensemble statistics. The dual variational methods solve the assimilation
problem in observational space and estimate the model errors implicitly
during the reconstruction of the states from the dual variables. Reduced
order approaches to solving the variational problem in physical space also
allow model errors to be taken into account.

In practice, model errors do not, however, satisfy the statistical assump-
tions made here. The model error is expected to depend on the model state
and hence to be systematic and correlated in time. A more general form
of the model error that includes both systematic and random elements is
described in the next subsection.

5.3. SYSTEMATIC MODEL ERROR AND STATE AUGMENTATION

The problem of accounting for systematic model errors in a cost-efiective
way has recently received more attention. Techniques for treating bias errors
in the forecast using sequential and four-dimensional variational assimila-



described by the equations

†k = Tk(ek) + qk ; (40)
ek+1 = Gk;k+1(xk; ek) ; (41)

where the vectors ek ∈ IRr represent time-varying systematic components
of the model errors and qk ∈ IRn are random errors. The random errors



xk+1 = Mk;k+1(xk) + Tk(ek) ; (42)
ek+1 = Gk;k+1(xk; ek) ; (43)

for k = 0; : : : ; N −1; where the observations are related to the model states
by the equations (2), as previously. It is assumed that prior estimates, or
‘background estimates,’ xb

0 and eb
0 of x0 and e0 are known.

The augmented data assimilation problem is to minimize the weighted
square errors between the model predictions and the observed system states,
over the assimilation interval. The problem is written

Problem 3 Minimize, with respect to (xT
0 ; eT

0 )T , the objective function

J , ( 1�



Nichols and Bell, 1999; Gri–th and Nichols, 1996, 2000). These techniques
have been applied successfully in practice to estimate systematic errors in
operational equatorial ocean models (Martin et al., 2001; Bell et al., 2004).

5.4. DATA ASSIMILATION FOR PARAMETER ESTIMATION

Model errors also arise from inaccurate parameters in the model equations.
The parameters generally enter the problem nonlinearly, but since the re-
quired parameters are constants, the dynamics of the model errors in this
case are simple. The error vector is usually also of small dimension rela-
tive to the dimension of the state variables. Using augmented forms of the
equations, data assimilation can be applied directly to the estimation and
calibration of the parameters. The augmented model equations take the
form

xk+1 = Mk;k+1(xk; ek) ; (45)
ek+1 = ek ; (46)

where the vector e0 represents the unknown parameters in the model. The
estimation problem is then to minimize the objective function (44), subject
to the model equations (45){(46).

The standard sequential and variational assimilation schemes can be
applied to solve the problem. In the sequential methods, the form of the
weighting (or covariance) matrices becomes important due to the nonlinear-
ity of the system equations. On the other hand, in the variational methods,
the adjoint equations take a simple form and only the adjoints of the states
are needed in order to flnd the gradients of the objective function with re-
spect to both the states and the model errors. An application of a sequen-
tial scheme to the estimation of parameters in a simplifled morphodynamic
model for forecasting coastal bathymetry is described in Smith et al. (2008).

In summary, assimilation techniques for estimating random and system-
atic components of model errors along with the model states are described
here. These techniques are efiective and can lead to signiflcantly improved
forecasts (see Andersson and Th¶epaut, this book). For difierent types of er-
ror, difierent forms for the model error evolution are appropriate. E–cient
methods for taking into account both random and systematic model errors
are currently major topics of research.

6. Conclusions

The aims and basic concepts of data assimilation for geophysical and envi-
ronmental systems are described here. Two approaches to the problem of



data assimilation, sequential and variational assimilation, are introduced.
A variety of assimilation schemes for discrete nonlinear system models are
derived and practical implementation issues are discussed. For all of these
schemes, the model equations are assumed to be ‘perfect’ representations
of the true dynamical system. In practice the models contain both system-
atic errors and random noise. In the flnal section of the chapter we discuss
data assimilation techniques for treating model errors of both types. Sig-
niflcant approximations are needed in order to implement these methods
in ‘real-time,’ due to computational constraints. Further research on data
assimilation schemes is needed and there remain many open problems for
investigation. Details of current work on data assimilation schemes are given
in subsequent chapters of this book.
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